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Abstract  Spina bifida meningomyelocele (SBM) is a neural tube defect that 
involves dysraphism of the spinal cord and extensive reorganization of the 
brain. The authors assessed the relationship between chronotype, diurnal 
preferences, and sleep problems in individuals with SBM and healthy controls. 
Although individuals with SBM showed the characteristic decelerating 
quadratic relationship between age and chronotype, the curve was displaced, 
peaking at a younger age in controls compared with SBM (23.4 vs. 29.2 years). 
Groups did not differ in morningness-eveningness preferences. Individuals 
with SBM endorsed more sleep problems than controls. Further examination of 
the relationship between entrainment and sleep in SBM is warranted.
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The timing of sleep relative to the 24-h day 
changes across the life span, with progressively later 
sleep-wake times during childhood and adolescence 
(Carskadon et al., 1993) and earlier times in aging 
adults (Carrier et al., 1997). Sleep problems are 
common in neurodevelopmental disorders like SBM 
(Glickman, 2010; Harvey and Kennedy, 2002). SBM is 
associated with sleep apnea (Waters et al., 1998), 
abnormality of hypothalamic structures (Raybaud and 
Miller, 2008), and compromise of the optic nerve (Del 
Bigio, 2010), due to the Chiari II malformation of the 

cerebellum and brainstem, and due to hydrocephalus. 
To explore the idea that sleep may be disordered 
because of anomalies in brain regions associated 
with circadian rhythmicity, we measured chronotype, 
diurnal preferences, and sleep problems in 202 
individuals with SBM and 62 typically developing, 
healthy age peers (Suppl. Tables S1 and S2). 

Chronotype was measured using questions from 
the Munich Chronotype Questionnaire (MCTQ) to 
calculate the midpoint of sleep on free days, corrected 
for sleep duration (MSFsc; Suppl. Table S3; Roenneberg 
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et al., 2003). MSFsc is correlated with objective 
measures of circadian timing (i.e., phase angle of 
entrainment) and is sensitive to developmental 
changes and genetic mutations associated with sleep 
pathologies (Allebrandt and Roenneberg, 2008). The 
relationship between age and chronotype was 
quadratic within each group and overall (SBM: 
F(2,188) = 7.64, p < 0.0006, R2 = 0.075, significant 
linear and quadratic terms for age t(188) = 3.69, p < 
0.0003; t(188) = –3.57, p < 0.0004, respectively; 
Controls: F(2,55) = 7.04, p < 0.0019, R2 = 0.204, 
significant linear and quadratic terms for age t(55) = 
2.04, p < 0.05, t(55) = –3.72, p < 0.0005; Overall: 
F(5,243) = 5.31, p < 0.0001, R2 = 0.10, significant linear 
and quadratic terms for age t(243) = 3.97, p < 0.0001, 
t(243) = –3.73, p < 0.0002). The positive linear 
estimate and negative quadratic estimate means that 
chronotype increases with age but the instantaneous 
slope of the curve decelerates constantly with age, 
revealing an overall parabolic (inverted U) shape 
(Fig. 1). There were no significant effects of group or 
group by age interactions in the overall model (all  
p > 0.1) and no effect of sex or lesion level group, a 
proxy for ambulatory status in SBM (Fletcher et al., 
2005), when these variables were incorporated into 
the models (all p > 0.05). 

MSFsc peaked at age 23.4 in controls and age 29.2 
in SBM, identified by the derivative of the quadratic 
equation, that is, the point where the slope of the 
curve changes direction (where it equals zero). 
Inspection of Fig. 1 suggests differences in the 
rightward portion of the 2 curves (i.e., after MSFsc 
peaks in SBM), so we centered age at the SBM peak 
and found that the slope of the tangent line for 
controls was less than zero at this age (linear age by 
group interaction, t(243) = –2.15, p < 0.04); we found 
no interaction when age was centered at the control 
peak. This result is tempered by the nonsignificant 
group by (quadratic) age interaction, but it does 
suggest that at the age when MSFsc peaks in SBM, 
controls are already returning to earlier sleep-wake 
times.

Diurnal preference was measured using questionnaires 
that examine individual perceptions about “best” 
times of day for sleep, work, or other activities 
(Carskadon et al., 1993; Horne and Ostberg, 1976). 
Morningness-Eveningness Questionnaire (MEQ) 
scores have been correlated with measures of circadian 
rhythms in temperature, melatonin, and cortisol, 
although this relationship is not straightforward. 
Because diurnal preferences are measured with 

different instruments in children and adults, separate 
analyses were conducted for each age group. In 
children, there were no relationships between 
preference for morning versus evening activity and 
age (p > 0.05), nor were there differences between 
SBM and controls, or among controls, participants 
with lower spinal lesions, and those with upper 
spinal lesions (all p > 0.05). For adults, there was a 
linear relationship between age and diurnal preferences, 
t(122) = 3.46, p < 0.0007, that did not differ between 
diagnostic or lesion level groups, p > 0.05. Diurnal 
preferences and age were correlated across and 
within diagnostic groups (Overall: r = 0.29, p < 0.001; 
controls: n = 33, r = 0.36, p < 0.04; SBM: n = 92, r = 0.28, 
p < 0.007) 

Sleep problems were explored using different 
questions for children and adults (Suppl. Table S4). A 
greater number of sleep problems were reported for 
both groups with SBM, compared with controls.

Chronotype and diurnal preferences were 
negatively correlated in children and adults (children: 
controls, r = –0.48, p < 0.008; SBM, r = –0.43, p < 
0.0001; adults: controls, r = –0.71, p < 0.0001; SBM, r = 
–0.67, p < 0.0001).  Neither of these was correlated 
with sleep problems in children (all p > 0.05).  For 
adult controls (n = 33), chronotype was correlated with 
“Awakening in the early morning” (r = 0.46, p < 0.02), 

Figure 1.  Timing of the midpoint of sleep on free days, corrected 

for sleep duration (MSFsc) as a function of age in SBM and 

controls. The curves represent the quadratic relationship of 

MSFsc, in hours, to age in controls (solid line) and SBM (dashed 

line). The vertical lines indicate the age at which the curve of the 

line changes direction (slope = 0) for each group. Age was 

centered for statistical analyses but is displayed in the graph in 

years. Note: One participant whose MSFsc score was negative 

(i.e., sleeps more on work nights than on free nights) is not 

represented in the figure but his data are included in all analyses.
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but diurnal preference was not related to ratings of 
sleep problems (all p > 0.05). For adults with SBM, 
chronotype was correlated with “I get tired” (r = 0.25, 
p < 0.03) and “Trouble falling asleep” (r = 0.22, p < 
0.05); diurnal preference was related to endorsement 
of all sleep problems (range r = –0.22 to –0.33, median 
r = –0.26, all p < 0.05) except “Sleep that is restless or 
disturbed.”

Taken together, our data suggest that the phase 
relationship between sleep-wake timing and the 
24-h day in SBM is not identical to that of typically 
developing individuals. Although the shape of the 
curve relating chronotype to age was similar in both 
groups, the curve for SBM appears much flatter. The 
lack of a linear relationship when analyses were 
partitioned by age in SBM supports this finding and 
contrasts with the robust linear relationships in 
controls. In addition, the curve in controls trends 
downward at the time it peaks in SBM.  

Although evidence of premature development in 
SBM includes precocious puberty (Dahl et al., 1996) 
and early onset of cognitive difficulties characteristic 
of aging (Dennis et al., 2010), sleep timing patterns 
were delayed in adults with SBM relative to controls, 
with the shift to earlier sleep-wake times occurring 
almost a decade later than that documented prev- 
iously (Roenneberg et al., 2004). Our results add to 
the extensive database of age-related changes in 
chronotype in the general population (Roenneberg 
et al., 2004) but suggest that there may be clinical 
groups with different phase relationships.

All adults increasingly preferred morning activities 
as they aged, but we found no relationship between 
younger age and increasing preference for evening 
activities, and no group differences in diurnal 
preferences, despite group differences in chronotype 
and a correlation between diurnal preferences and 
chronotype. Although chronotype and diurnal 
preferences have been used interchangeably, our data 
suggest that they are dissociable. 

Children and adults with SBM endorsed sleep 
problems more often than controls. Interestingly, the 
problems endorsed by adults appear to involve sleep 
timing and quality. Chronotype was correlated with 
early morning awakening in controls, reflecting the 
typical developmental shift in sleep timing. In adults 
with SBM, chronotype was related to different sleep 
problems, raising the possibility that disturbances in 
circadian timing contribute to sleep difficulties in this 
population. Although chronotype is a more direct 
measure of sleep than is diurnal preference 

(Allebrandt and Roenneberg, 2008), diurnal preference 
was also related to sleep problems in adults with 
SBM. 

Limited mobility might have affected chronotype 
or diurnal preferences.  For example, the availability 
of assistance in toileting and wheelchair routines 
might have attenuated the adolescent shift to later 
activities, especially in individuals with SBM with 
upper spinal lesions who have more severe mobility 
challenges. In our sample, 93% of participants with 
upper spinal lesions were confined to wheelchairs 
with limited independent functioning in this 
domain. However, we found no relationship 
between lesion level group and diurnal preference 
or chronotype, suggesting that mobility or the 
structured delivery of services for mobility chall-
enges does not influence morningness-eveningness 
preferences and that level of physical activity is 
unrelated to the phase relationship between sleep 
and the 24-h day in SBM.

Children and adults with SBM have problems in a 
range of cognitive and motor domains (Dennis and 
Barnes, 2010); nevertheless, they appear to judge 
their “best” times of day for sleep, work, or other 
activities in a manner similar to that of their peers. 
Because diurnal preferences have been associated 
with variations in cognitive performance throughout 
the day in healthy children and adults (Hasher et al., 
2002; May et al., 2005), whether chronotype, diurnal 
preferences, or both are related to cognitive performance 
or the specific cognitive deficits (Dennis and Barnes, 
2010) in children and adults with SBM remains to be 
investigated. 
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