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Abstract

■ Testing older adults in the morning generally improves be-
havioral performance relative to afternoon testing. Morning
testing is also associated with brain activity similar to that of
young adults. Here, we used graph theory to explore how time
of day (TOD) affects the organization of brain networks in
older adults across rest and task states. We used nodes from
the automated anatomical labeling atlas to construct participant-
specific correlation matrices of fMRI data obtained during 1-back
tasks with interference and rest. We computed pairwise group
differences for key graph metrics, including small-worldness
and modularity. We found that older adults tested in the morn-

ing and young adults did not differ on any graph metric. Both
of these groups differed from older adults tested in the after-
noon during the tasks—but not rest. Specifically, the latter
group had lower modularity and small-worldness (indices of
more efficient network organization). Across all groups, higher
modularity and small-worldness strongly correlated with
reduced distractibility on an implicit priming task. Increas-
ingly, TOD is seen as important for interpreting and reproduc-
ing neuroimaging results. Our study emphasizes how TOD affects
brain network organization and executive control in older
adults. ■

INTRODUCTION

Circadian rhythms are endogenous biological fluc-
tuations entrained to the day–night cycle. These are
found everywhere in nature and affect virtually all life,
producing changes in metabolism, hormone expression,
and, importantly, alertness, cognition, and behavior
(Dibner, Schibler, & Albrecht, 2010; Hasher, Goldstein, &
May, 2005). In humans, older adults have a circadian peak
that occurs earlier in the day. The result is most older
adults are “morning types” with physiological and
mental peak earlier in the day than younger adults (Biss
& Hasher, 2012; Yoon, May, & Hasher, 1999). Differ-
ences in chronotype (circadian preference) can be reliably
measured using questionnaires (Roenneberg, Wirz-Justice,
& Merrow, 2003; Adan & Almirall, 1991; Horne & Ostberg,
1976). Chronotype questionnaires correlate strongly with
physiological measures of circadian rhythms, including
melatonin levels, heart rate variability, blood pressure,
actigraphy, midsleep point, and physical performance
(Facer-childs & Brandstaetter, 2015; Adan et al., 2012;
Kondratova & Kondratov, 2012; Roeser et al., 2012;
Roenneberg et al., 2003; Horne & Ostberg, 1975). Evi-
dence from our laboratory and others suggests that
performance on highly demanding fluid cognitive tasks
(i.e., not automatic or tests of crystallized/semantic

systems) is most affected by the time of testing and that
these effects are particularly pronounced in older adults
(Goldstein et al., 2007; Schmidt, Collette, Cajochen, &
Peigneux, 2007; Winocur & Hasher, 2002; Hasher, Zacks,
& May, 1999; Yoon et al., 1999).
Although research exists demonstrating the effects of

time of day on behavior, few studies have examined
the effects of time of testing on fMRI activity. Most of
the latter studies have focused exclusively on younger
adults and have shown an effect of both chronotype
and time of testing on task-related fMRI activity, that is,
a synchrony effect (Schmidt et al., 2012; Peres et al.,
2011; Marek et al., 2010). We recently reported reduced
differences between younger and older adults in task-
related activations in a time-of-day paradigm. When we
tested older adults at their optimal time of day, they
showed a similar degree of activation in the brain regions
associated with a cognitive control task in young adults.
By contrast, older adults tested at an off-peak time
showed no reliable activation in these regions (Anderson,
Campbell, Amer, Grady, & Hasher, 2014). Thus, time of
testing attenuates age effects in BOLD activity. However,
little work has been done to explore time-of-day effects
on brain networks in the context of aging (see Blautzik,
Vetter, Peres, & Gutyrchik, 2013).
We attempted to bridge this gap using a graph theory

approach. This analysis technique statistically describes
the topological organization of anatomical and functional
networks (Power, Fair, Schlaggar, & Petersen, 2010; Rubinov
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& Sporns, 2010). Most biological systems follow an eco-
nomical “small-world” organization (Bullmore & Sporns,
2009). Such networks have dense clusters of nodes with
short path lengths (i.e., average distance between any
node pair; Bullmore & Sporns, 2012; Latora & Marchiori,
2005; Sporns, Chialvo, Kaiser, & Hilgetag, 2004; Watts &
Strogatz, 1998). Analyses of network properties across
the life-span have revealed age differences. Resting
state studies show that old age predicts reduced small-
world organization and modularity (Cao et al., 2014;
Chan, Park, Savalia, Petersen, & Wig, 2014; Geerligs,
Renken, Saliasi, Maurits, & Lorist, 2014; Schaefer et al.,
2014; Song, Birn, et al., 2014; Song, Zhang, & Liu, 2014;
Onoda & Yamaguchi, 2013; Tomasi & Volkow, 2012; Wu
et al., 2012; Zuo et al., 2012; Chen, He, Rosa-Neto, Gong,
& Evans, 2011; Meunier, Achard, Morcom, & Bullmore,
2009; Achard & Bullmore, 2007). Although graph analytic
approaches have also been conducted on task-based
data (e.g., Geib et al., 2015; Cao et al., 2014; Kitzbichler,
Henson, Smith, Nathan, & Bullmore, 2011; Bassett, Meyer-
Lindenberg, Achard,Duke,&Bullmore, 2006), this literature
is especially lacking in the context of old age. Geerligs,
Maurits, Renken, & Lorist, (2014) examined task-linked
declines in functional connectivity in younger and older
adults. They examined performance during a visual oddball
task in a variety of functional networks. The authors
reported a consistent decrease in connectivity within
networks with age, especially in the default mode network
(DMN) and somatomotor networks with a concomitant
increase in functional connectivity across networks (see
Grady, Sarraf, Saverino, & Campbell, 2016, for similar
results). This decrease within network connectivity also
was shown to correlate with worse cognitive ability. To our
knowledge, no study has considered age differences across
the day using this method.
Can time of day alter a functional system’s topological

organization? Given the relevance of this question to the
interpretation of cognitive performance in old age, we
explored how time of day shapes rest and task-linked
brain network organization in older adults. We predicted
a similar pattern of network organization for younger
adults and the older adults tested in the morning, par-
ticularly during task when the systems would experience
more cognitive load. We expected that morning older
adults and young adults should both have more eco-
nomical (small-world) brain networks than older adults
tested in the afternoon. This outcome would parallel
previous behavioral advantages found for older adults
tested in the morning. To preview our results, as pre-
dicted, during task states, network topology in older
adults tested in the morning resembled that of younger
adults. These two groups had similar levels of “small-
world” network organization and greater modularity—
both generally considered to be hallmarks of greater
network efficiency (but see Kitzbichler et al., 2011).
Compared with both young and morning old groups, older
adults tested in the afternoon had lower network effi-

ciency measures. During resting states, however, no group
differences were evident. Our findings suggest that age
differences in brain organization are most apparent with
increasing task demand and are exacerbated by sub-
optimal testing contexts (i.e., nonoptimal times of day).

METHODS

Participants

Sixteen older and 16 younger adults were tested in the
afternoon (3:00 p.m.; AO group), and 18 older adults
were tested in the morning (8:00 a.m.; MO group; task-
related activation from these participants was previously
reported in Anderson et al., 2014). As demographic data
did not differ across the older groups, (all t values were
<0.4, ps > .5), we present averaged descriptive statistics.
Older adults’ average age was 70.35 (SD = 7.68) years,
and they had an average of 15.94 (SD = 2.36) years of
education. Younger adults, the AY group, were, on aver-
age, 23.94 (SD = 4.17) years old. All older participants
had normal Mini-Mental State Examination (M = 28.20,
SD = 1.67) and Shipley vocabulary scores (M = 35.77,
SD = 2.81; Folstein, Folstein, & McHugh, 1975; Shipley,
1946) and were predominantly “morning types” as mea-
sured with the Morningness–Eveningness Questionnaire
(MEQ; Horne & Ostberg, 1975). Consistent with previous
research, younger participants had slightly lower Shipley
scores (M = 33.42, SD = 3.46), t(48) = 2.56, p = .01, and
were significantly more “evening-oriented” on the MEQ
(M = 46.6, SD = 11.3) than their older peers (M = 61.7,
SD = 8.0), t(24.8) = 4.72, p ≤ .001. Note that, according
to the MEQ, a score of 59–69 indicates a “moderate morn-
ing” type, whereas a score of 31–41 indicates a “moderate
evening type.” Most of our older adults scored in the neutral-
to-moderate morning range, whereas most of our young
adults scored in the neutral-to-moderate evening range.

Procedure

During scanning, the participants did a 1-back task press-
ing a button for repeated picture stimuli of familiar ob-
jects. Stimuli contained irrelevant distractor text (word
and nonwords) superimposed over the pictures, which
participants were asked to ignore.

After an arrow flanker task (Eriksen & Eriksen, 1974),
the participants were given a word fragment completion
task containing some of the words that had previously
been shown as distraction during the 1-back task to test
for implicit access to those distracting items (the word frag-
ment completion task was unscanned and is referred to as
the “priming for distraction task” from this point forward).
After the task described above, participants had a 7-min
(eyes-closed) resting state scan in which they were in-
structed to relax, not think about anything in particular,
and not fall asleep (full details can be found in Anderson
et al., 2014; Campbell, Grady, Ng, & Hasher, 2012).
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fMRI Data Acquisition and Preprocessing

Participants were scanned using a Siemens (Erlangen,
Germany) Trio 3-T scanner 12-channel head coil. Anatom-
ical scans were acquired with a 3-Dmagnetization prepared
rapid gradient-echo sequence (repetition time = 2 sec,
echo time = 2.63 msec, field of view = 25.6 cm2, 256 ×
256 matrix, 160 slices of 1 mm thickness). Functional runs
were acquired with an EPI sequence, with 157 volumes
for each of the 1-back runs (repetition time = 2 sec, echo
time = 30 msec, flip angle = 70°, field of view = 20 cm2,
64 × 64 matrix, 30 slices of 5 mm thickness, no gap).
Measures of pulse and respiration were obtained during
the scan.

Preprocessing of the image data was performed with
the Analysis of Functional NeuroImages software (Cox,
1996). This included physiological motion correction
using RETROICOR, rigid motion correction, spatial nor-
malization to the Montreal Neurological Institute space,
and smoothing with an 8-mm Gaussian filter (the final
voxel size was 4 × 4 × 4 mm). We also used a mask-
based approach to regress out the mean signals from the
white matter, cerebral spinal fluid, vasculature, and motion
time series from each voxel time series (Campbell, Grigg,
Saverino, Churchill, & Grady, 2013; Grady et al., 2010).

As motion has been demonstrated to affect functional
connectivity measures, even after standard correction
procedures (e.g., Power, Barnes, Snyder, Schlaggar, &
Petersen, 2012), we followed a motion scrubbing pro-
cedure described in Campbell et al. (2013). Briefly, this
procedure uses a multivariate technique to identify out-
liers in both the motion parameter estimates and fMRI
signal itself. Where such outliers co-occurred (never
more than 4% of the total volumes), we removed the
fMRI volumes and replaced them with values inter-
polated with cubic splines. As reported by Campbell
et al. (2013), this method has the advantage of suppress-
ing spikes, yet keeping the length of the time course
intact across participants. We found no differences be-
tween groups in the number of volumes removed for
any scan type (smallest p = .14). Finally, the task effects
(i.e., stimulus onsets) were regressed from the task run
using the CONN toolbox (Whitfield-Gabrieli & Nieto-
Castanon, 2012).

Graph Theory Analysis Using the GAT Toolbox

ROIs were defined using the ROIs from the automated
anatomical labeling (AAL) atlas, which parcellates the
brain into 90 regions (Whitfield-Gabrieli & Nieto-Castanon,
2012; Maldjian, Laurienti, Kraft, & Burdette, 2003). We
extracted the average fMRI time series per condition
within ROIs for each individual using the CONN tool-
box. Individual participant correlation matrices were
then input into the GAT Toolbox (Hosseini, Hoeft, &
Kesler, 2012) and used to calculate graph metrics. Thresh-
olding the association matrices of different groups at an

absolute threshold results in networks with a different
number of nodes (and degrees) that might influence
the network measures and reduce interpretation of
between-group results. Two approaches were imple-
mented for thresholding the constructed association
matrices based on previous studies: (1) thresholding
the constructed association matrices at a minimum net-
work density (Dmin) in which all nodes become fully
connected in the brain networks of both groups (none
of the networks are fragmented) and (2) thresholding
the constructed association matrices at a range of net-
work densities for comparing the network topologies
across that range. The GAT toolbox allows the user to
specify the range and the interval between densities.
For the initial step of calculating and displaying graph

metrics, we set a wide density range (between 0.1 and
0.7) to form a binary adjacency matrix of 0s and 1s.
The individual’s graph is then constructed to have N nodes
and degree equal to the number of edges (connections
between regions). One of the advantages of using the
GAT toolbox is that it avoids thresholding the adjacency
matrices of individuals (which might arbitrarily remove
nodes and degrees) and instead presents results across a
range of correlation thresholds (densities).
Then, a smaller density range was obtained by a dis-

connectivity test and a small-worldness value of 1.5
(0.22–0.44; Hosseini et al., 2012)—these thresholds were
used in subsequent calculations of group comparisons.
Values smaller than 0.22 or larger than 0.44 should be
interpreted with caution as they may be influenced by
disconnected graphs or outlying values. We therefore
only analyzed values falling within this range. To deter-
mine group level differences, individual graph metrics
at each density were extracted per condition. We then
ran separate mixed measures ANOVAs for each graph
metric. Thus, each analysis consisted of a 3 (Group) ×
3 (Condition) × 23 (Density) design, where group was the
between-subject measure and density was the repeated
within-subject measure. Post hoc two-way comparisons
were run using Bonferroni corrections. Note that the
number of edges is matched per density across individuals.
We focused our analyses on two primary measures:

(a) small-worldness, a measure of overall network effi-
ciency (Hosseini et al., 2012; Rubinov & Sporns, 2010),
and (b) modularity, or how nodes hierarchically cluster
into communities that are more highly connected with
each other than nodes outside the community (module).
In the GAT toolbox, modularity is calculated with the
Louvain algorithm (Blondel, Guillaume, Lambiotte, &
Lefebvre, 2008). Modules are often regarded as signs of
specialized processing within the network (e.g., Bullmore
& Sporns, 2009, 2012; Stevens, Tappon, Garg, & Fair,
2012, but see Kitzbichler et al., 2011).
For visualization purposes, edge matrices were ex-

ported from the GAT toolbox and displayed for each
group using iGraph (Csardi & Nepusz, 2006), a toolbox
that can display 2-D spring-loaded graphs, and BrainNet

562 Journal of Cognitive Neuroscience Volume 29, Number 3



Viewer to help situate nodes in anatomical space (www.
nitrc.org/projects/bnv/; Xia, Wang, & He, 2013).

RESULTS

Accuracy of n-Back Performance

n-back data for four participants was missing. Values for
these participants (one morning older adult, one after-
noon older adult, and two younger adults) were imputed
in SPSS using age, Shipley scores, Mini-Mental State
Examination, priming, and Flanker effect scores (i.e.,
incongruent–congruent RTs). Averages obtained with
and without imputation were similar and did not change
the results described below.
Accuracy on the n-back task was tested separately for

each condition (word and nonword) using a simple
between-group ANOVA. Accuracy did not differ between
groups in the ignore-nonwords condition, F(2, 47) =
0.92, p = .405, but did differ on the ignore-words condi-
tion, F(2, 47) = 6.549, p = .003, ηp

2 = 0.219. Post hoc
Bonferroni tests revealed that both the morning old (M =
0.88, SD = 0.14), t(32) = 2.5, p = .047, and afternoon old

(M = 0.82, SD = 0.17), t(30) = 3.54, p = .003, groups
differed significantly from the afternoon young group
(M = 0.99, SD = 0.03), although they themselves did not
differ, t(32) = 1.14, p = .78. Paralleling our previously re-
ported findings of linearly increasing priming for dis-
traction from afternoon old to morning old to young, we
similarly found a significant linear trend describing accu-
racy on the ignore-words condition, F(2, 47) = 6.549,
p = .003, ηp

2 = 0.219. In line with our previous findings,
these results suggest that older adults tested in the after-
noon were most distracted on the ignore-words condition.

Between-group Differences in
Global Network Measures

In Figures 1 and 2, the group-averaged graph metrics con-
tributing to small-worldness and modularity are displayed
for a range of densities. To test for group differences in
graph metrics across densities and conditions, we used
two mixed-design ANOVAs. Each analysis (modularity
and small-worldness) was a 3 (Group) × 3 (Condition) ×
23 (Density) mixed-measures design. We then used within-
condition analyses with post hoc two-way comparisons

Figure 1. Group differences in global network values (sigma) by condition. Error bars are ±1 SEM. The graph in the lower right-hand corner of
each panel shows the group averages across densities.
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to break apart interactions. For Bonferroni-corrected
post hoc comparisons, adjusted p values are reported
with the original df.

Group Differences in Small-worldness

The three-way interaction between Condition (ignore
words, ignore nonwords, and rest), Group (MO, AO,
and AY), and Density was significant, F(88, 2068) =
2.08, p < .001, ηp

2 = 0.081. This suggested that, across
density values and conditions, the groups differed in
small-worldness. To decompose this significant inter-
action, we ran three follow-up analyses. First, we assessed
group differences in small-worldness at rest (Figure 1A).
The main effect of Group was not significant, F(2, 47) =
0.107, p = .898, ηp

2 = 0.005, suggesting that the groups
did not differ. The main effect of Density was significant,
F(22, 1034) = 87.85, p < .001, ηp

2 = 0.651, suggesting
that small-worldness during rest changed as a function
of graph density. The two-way interaction between Group
and Density was not significant, F(44, 1034) = 0.159, p =
1.00, ηp

2 = 0.007. The lack of significant interaction and
the main effect of Group suggest that small-word values

were equivalent across groups during rest. Next, we
assessed group differences in small-worldness in the
ignore-nonwords condition (Figure 1B). For this condi-
tion, the main effect of Group was significant, F(2, 47) =
5.677, p = .006, ηp

2 = 0.195, as was the main effect of
Density, F(22, 1034) = 91.44, p< .001, ηp

2 = 0.661. Here,
the Group × Density interaction was significant, F(44,
1034) = 8.348, p < .001, ηp

2 = 0.26. Post hoc Bonferroni
tests carried out on mean sigma across densities revealed
that the MO and AY groups both differed significantly
from the AO group, t(32) = 2.64, p = .034, and t(30) =
3.16, p = .008, respectively. However, the MO and AY
groups did not differ, t(32) = 0.612, p = 1.00. Finally, we
assessed group differences in small-worldness in the
harder ignore-word condition (Figure 1C). The main effect
of Group was significant, F(2, 47) = 3.458, p = .04, ηp

2 =
0.128, as was the main effect of Density, F(22, 1034) =
77.81, p < .001, ηp

2 = 0.623. The two-way interaction
between Group and Density was significant, F(44, 1034) =
2.72, p < .001, ηp

2 = 0.104. Post hoc Bonferroni tests
revealed that the only significant difference was between
the AY group and the AO group, t(30) = 2.63, p = .035.
The values for the MO group fell in between those of the

Figure 2. Group differences in global network values (modularity) by condition. Error bars are ±1 SEM. The graph in the lower right-hand corner
of each panel shows the group averages across densities.
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other two groups but did not differ from either the AO
group, t(32) = 1.25, p = .65, or the AY group, t(32) =
1.45, p = .46. Figure 1D summarizes these effects.

Group Differences in Modularity

The three-way interaction between Condition, Group, and
Density was significant, F(88, 2068) = 1.34, p= .021, ηp

2 =
0.054. This suggested that, across density values and
conditions, the groups differed in modularity. As above,
to decompose this significant interaction, we ran three
follow-up analyses. First, we assessed group differences
in modularity at rest (Figure 2A). The main effect of Group
was not significant, F(2, 47) = 0.347, p= .709, ηp

2 = 0.015,
suggesting that the groups did not differ. The main effect
of Density was significant, F(22, 1034) = 452.87, p < .001,

ηp
2 = 0.906, suggesting that modularity during rest changed

as a function of graph density. Here, the two-way inter-
action between Group and Density failed to reach sig-
nificance, F(44, 1034) = 0.447, p = .99, ηp

2 = 0.019.
The above nonsignificant main effect of Group and
the lack of interaction with Density suggest that, at rest,
modularity values were equal across groups. Next, we as-
sessed group differences in modularity during the easier
ignore-nonword condition (Figure 2B). The main effect
of Group was significant, F(2, 47) = 6.109, p = .009,
ηp
2 = 0.206, as was the main effect of Density, F(22, 1034) =

953.269, p< .001, ηp
2 = 0.953. Here, the two-way interaction

between Group and Density was significant, F(44, 1034) =
7.159, p < .001, ηp

2 = 0.233. Post hoc Bonferroni-corrected
t tests revealed that the MO and AY groups both dif-
fered significantly in mean modularity from the AO group,

Table 1. AAL Atlas Regions

Figure
Code AAL Atlas Label

Figure
Code AAL Atlas Label

Figure
Code AAL Atlas Label

Figure
Code AAL Atlas Label

1 Amygdala (L) 26 Lingual (R) 51 SMA (L) 76 Frontal sup medial (R)

2 Amygdala (R) 27 Occipital inf (L) 52 SMA (R) 77 Precentral (L)

3 Caudate (L) 28 Occipital inf (R) 53 Supramarginal (L) 78 Angular (R)

4 Caudate (R) 29 Occipital mid (L) 54 Supramarginal (R) 79 Frontal inf tri (R)

5 Cingulum mid (L) 30 Occipital mid (R) 55 Temporal inf (L) 80 Frontal med orb (L)

6 Cingulum mid (R) 31 Occipital sup (L) 56 Temporal inf (R) 81 Frontal mid orb (L)

7 Cingulum post (L) 32 Occipital sup (R) 57 Temporal mid (L) 82 Precentral (R)

8 Cingulum post (R) 33 Olfactory (L) 58 Temporal mid (R) 83 Precuneus (L)

9 Frontal inf oper (L) 34 Olfactory (R) 59 Temporal pole mid (L) 84 Temporal pole sup (L)

10 Frontal inf oper (R) 35 Pallidum (L) 60 Temporal pole mid (R) 85 Frontal med orb (R)

11 Frontal inf orb (L) 36 Pallidum (R) 61 Temporal pole sup (R) 86 Frontal mid orb (R)

12 Frontal inf orb (R) 37 Paracentral lobule (L) 62 Temporal sup (L) 87 Precuneus (R)

13 Frontal sup (L) 38 Paracentral lobule (R) 63 Temporal sup (R) 88 Calcarine (R)

14 Frontal sup (R) 39 Parahippocampal (L) 64 Thalamus (L) 89 Frontal mid (L)

15 Frontal sup orb (L) 40 Parahippocampal (R) 65 Thalamus (R) 90 Frontal mid (R)

16 Frontal sup orb (R) 41 Parietal inf (L) 66 Rectus (L)

17 Fusiform (L) 42 Parietal inf (R) 67 Rectus (R)

18 Fusiform (R) 43 Parietal sup (L) 68 Angular (L)

19 Heschl (L) 44 Parietal sup (R) 69 Calcarine (L)

20 Heschl (R) 45 Postcentral (L) 70 Cingulum ant (L)

21 Hippocampus (L) 46 Postcentral (R) 71 Cingulum ant (R)

22 Hippocampus (R) 47 Putamen (L) 72 Cuneus (L)

23 Insula (L) 48 Putamen (R) 73 Cuneus (R)

24 Insula (R) 49 Rolandic oper (L) 74 Frontal inf tri (L)

25 Lingual (L) 50 Rolandic oper (R) 75 Frontal sup medial (L)
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t(32) = 2.83, p= .021, and t(30) = 3.217, p= .007, respec-
tively. Yet, the MO and AY groups did not differ, t(32) =
0.48, p = 1.00. Finally, we assessed group differences in
modularity in the harder ignore-word condition (Fig-
ure 2C). The main effect of Group was significant, F(2,
47) = 4.229, p = .020, ηp

2 = 0.153, as was the main effect
of Density, F(22, 1034) = 856.498, p < .001, ηp

2 = 0.948.
The two-way interaction between Group and Density was
significant, F(44, 1034) = 1.736, p = .002, ηp

2 = 0.069.
Post hoc Bonferroni tests revealed that the only significant
difference was between the AY group and the AO group,
t(30) = 2.89, p= .017. The MO group did not differ from
either the AO group, t(32) = 1.23, p= .68, or the AY group,
t(32) = 1.75, p= .26. Thus, the results for small-worldness
and modularity were similar in showing differences
between the AO group and the other two groups (see
Figure 2D). Note that, although there is a clear interaction
between Modularity/sigma and Density × Group suggest-
ing that the graph metrics are changing differently across

graph densities, these interactions may be due to larger
group effects at lower densities (i.e., in the strongest corre-
lations). It is possible that older adults draw upon weaker
connections in the higher-density networks to compen-
sate; however, given that how density affects graph metrics
is not our primary research question, we suggest that this
is an avenue for future research.
Figure 3 illustrates how time of testing affected the

topological organization of the functional networks dur-
ing each of the three conditions. It should be noted that
differences depicted in this figure are descriptive, and we
have not carried out any statistical between-group com-
parisons because the node-to-module assignments differ
across the groups.
Overall, the networks in the MO and AY groups can be

classified into four main modules or subgraphs. Green
modules predominantly involve the medial-temporal
lobes bilaterally, bilateral insula, and SMA—in young
adults, this subgraph resembles the salience network.

Figure 3. Spring-loaded graphs depicting differences in task-linked network topology by group and condition. Numbers refer to AAL atlas
regions (see Table 1). Regions are colored by modularity affiliation (determined in Igraph using the Louvain algorithm; Blondel et al., 2008).
To see modules in brain space, see Figure 4. Spring-loaded graphs are represented with the ForceAtlas2 algorithm with 2000 iterations ( Jacomy,
Venturini, Heymann, & Bastian, 2014). Within-module connections are depicted with gray lines; between-module connections are depicted with
orange lines. To see the nodes in brain space, please go to dx.doi.org/10.6084/m9.figshare.3502196.v1.

566 Journal of Cognitive Neuroscience Volume 29, Number 3



Gray modules are largely consistent with the visual/dorsal
attention networks and are remarkably stable both across
conditions and age groups. Purple regions include dorso-
lateral pFC in young adults and are consistent with the
frontoparietal control network in older adults (Spreng,
Sepulcre, Turner, Stevens, & Schacter, 2013; Vincent, Kahn,
Snyder, Raichle, & Buckner, 2008). Turquoise regions
are consistent with a midline network/DMN (Raichle &
Snyder, 2007).
Variations in modular organization are also apparent.

In young adults, for example, the purple module appears
to be localized to frontal regions and does not include
parietal nodes as it does in the older groups. The tur-
quoise midline/default module in young adults is much
denser relative to older adults and includes nodes from
both the frontoparietal (e.g., anterior cingulate) and
default (e.g., angular gyrus and medial frontal cortex) net-
works. Another difference of some note is that older
adults tested in the afternoon have an additional sub-
module representing the frontal and parietal regions in
the two task conditions (dark blue module). This division
is completely absent during the tasks in the AY and MO
groups. This split in the AO group between frontal and
parietal subgraphs occurring only in the two task condi-
tions parallels the differences described in global metrics
(i.e., older adults tested in the afternoon maintain net-
work integrity at rest but not under the additional cog-
nitive load of a task).

Correlations of Graph Metrics with
Priming for Distraction

One motivation for examining how time of testing affects
network changes during task was to predict behaviors
that typically show large circadian variation. Previous re-
search has demonstrated that tasks requiring top–down

control and especially those involving an inhibitory com-
ponent are particularly susceptible to time-of-day influ-
ences, whereas measures of crystallized intelligence or
semantic knowledge are not (Intons-Peterson, Rocchi,
West, McLellan, & Hackney, 1999; Yoon et al., 1999;
May & Hasher, 1998; May, Hasher, & Stoltzfuz, 1993).
We therefore predicted that graph metrics indicating bet-
ter network performance (i.e., higher modularity and
small-worldness) would correlate with better performance
on tasks requiring attention regulation—in this case, inhib-
itory control of irrelevant information and the Flanker
effect (for more information on this measure, please see
Anderson et al., 2014)—but show little to no relationship
with a measure of crystallized intelligence, the Shipley—
which has been demonstrated not to vary with arousal
(Park et al., 2002; Salthouse, 1996; Horn & Cattell, 1967).

We extracted individual graph metrics (small-worldness
and modularity), averaged them across densities, and
correlated them with priming for distraction (i.e., how
likely participants were to generate previously seen dis-
tracting words relative to never before seen words in the
fragment completion task; see Figure 4 and Table 2).
Across groups, higher values of modularity and small-
worldness (sigma) predicted less priming for distraction—
particularly at rest. In contrast, the Flanker effect was best
predicted by modularity and sigma during the ignore-
words condition, as might be expected given that the lat-
ter was the most difficult condition. As expected, there
was no relationship between the graph theory metrics
and vocabulary. These correlations, as well as the graph
metric data shown in Figures 1 and 2, indicate that add-
ing a cognitive load not only appears to drive down
levels of global modularity and small-worldness, partic-
ularly at nonoptimal times of day in the older adults, but
also decreases the strength of correlations between these
graph metrics and interference control.

Figure 4. Relationship between
modularity and priming for
distraction by condition.
Dotted lines represent the
95% confidence ellipse for
each group. Gray shaded
regions indicate the 95%
confidence estimate for the
regression line. Modularity
was chosen as an exemplar
measure; similar relationships
were observed with small-
worldness (see text).
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DISCUSSION

Our research shows that time of testing in older adults
affected their brain network organization. We used
graph theory to show that the brain networks of older
adults tested in the morning resembled those of youn-
ger adults. This was not the case for older adults tested
in the afternoon. In particular, older adults tested in the
morning have similar small-worldness to younger adults.
Both of these groups had more small-world network
organization than older adults tested in the afternoon.
Given that ∼75% of adults aged 66 years and older are
morning types, our findings have relevance to an increas-
ingly large demographic (Hasher, Goldstein, & May, 2005;
May et al., 1993).

Although we did not explicitly define functional net-
works a priori, we did find functionally connected regions
that resemble known networks. These data-driven clus-
ters include the salience, visual/dorsal attention, and mid-
line network/DMN. The DMN is more active during rest,
unlike the task-positive network (Buckner, Andrews-
Hanna, & Schacter, 2008; Toro, Fox, & Paus, 2008; Fox
et al., 2005; Raichle et al., 2001). This latter network can

be further subdivided into the frontoparietal and dorsal
attention networks. These task-related networks may me-
diate cognitive control and decision-making and externally
oriented attention (Spreng et al., 2013; Vincent et al.,
2008). Despite independent identification of networks
for each group, we note a conservation of structure. Thus,
most networks were identifiable for each group regardless
of age and time of testing. These networks were also
comparable with previously reported descriptions of the
DMN and task networks (Buckner et al., 2008; Toro
et al., 2008; Fox et al., 2005; Raichle et al., 2001).
A network with high modularity has dense intramodule

connections and sparse intermodule connections. Older
adults typically have lower modularity scores and different
modular organization than younger adults (e.g., Onoda &
Yamaguchi, 2013; Meunier et al., 2009). In our sample,
older adults tested in the morning had equivalent mod-
ularity scores to young adults during the tasks, whereas
older adults tested in the afternoon had modularity
levels equivalent to those seen in young adults only at rest.
In addition, the AY and MO groups had similar network
topography across rest and task conditions, suggesting

Table 2. Relationship between Graph Metrics and Behavior

Bayesian Pearson Correlation

Correlation Between r BF10 p Strength of Evidence from Bayes Factor

Rest Modularity Priming for distraction −.408 11.915 .003 Decisive

Sigma Priming for distraction −.328 2.454 .02 Substantial

Modularity Flanker effect −.04 0.183 .784 Barely worth mentioning

Sigma Flanker effect −.008 0.177 .955 Barely worth mentioning

Modularity Shipley −.01 0.177 .994 Barely worth mentioning

Sigma Shipley .036 0.182 .802 Barely worth mentioning

Ignore nonwords Modularity Priming for distraction −.267 0.975 .061 Barely worth mentioning

Sigma Priming for distraction −.285 1.246 .045 Barely worth mentioning

Modularity Flanker effect −.172 0.352 .233 Barely worth mentioning

Sigma Flanker effect −.213 0.513 .138 Barely worth mentioning

Modularity Shipley −.141 0.281 .328 Barely worth mentioning

Sigma Shipley −.122 0.249 .4 Barely worth mentioning

Ignore words Modularity Priming for distraction −.253 0.807 .077 Barely worth mentioning

Sigma Priming for distraction −.241 0.706 .091 Barely worth mentioning

Modularity Flanker effect −.357 4.125 .011 Strong

Sigma Flanker effect −.332 2.632 .018 Substantial

Modularity Shipley −.068 0.196 .638 Barely worth mentioning

Sigma Shipley −.031 0.18 .831 Barely worth mentioning

Bayes factors are provided along with strength of evidence for the effect. Note that the relationship between modularity at rest and priming
for distraction is “decisive,” whereas the relationship between modularity during the ignore-words condition and the Flanker effect is “strong”
( Jaynes, 2003).

568 Journal of Cognitive Neuroscience Volume 29, Number 3



maintenance of network integrity from rest to task states
in these groups. We also observed that, for older adults
tested in the afternoon, the frontoparietal submodule
split into two components during the tasks (i.e., separate
frontal and parietal modules). By contrast, the other two
groups did not have the same degree of network reorga-
nization in response to changing conditions. This im-
plies that older adults tested in the afternoon were
unable to maintain the rest network structure as task
demands increased. Our findings broadly agree with
theories of aging suggesting that older adults engage
task-related brain regions at lower levels of cognitive
load than younger adults, which then decrease as load
increases (Reuter-Lorenz & Cappell, 2008). In short,
older adults tested in the afternoon appear to show
load-related increases in modularity and sigma values at
lower levels of cognitive load than older adults tested in
the morning. This suggests that older adults are better
able to respond to cognitive demands when they are at
peak levels of alertness.
Higher modularity scores in young adults derived from

intrinsic control networks in resting state fMRI have been
associated with greater working memory capacity (Stevens
et al., 2012). Modularity also predicted the consistency of
cognitive performance across multiple sessions. In this
case, modularity’s role may be to regulate signal or sup-
press noise before it propagates through the network
(Stevens et al., 2012). The idea that noise propagation is
reduced with higher modularity is interesting in light of
the of inhibitory control theory of attention and memory
(Lustig, Hasher, & Zacks, 2004; Hasher et al., 1999). This
theory postulates that age differences emerge from a fail-
ure to suppress irrelevant environmental stimuli or errant
thought processes. These irrelevant items then get inte-
grated into the same representation as attended/to-be-
remembered items. Memory failures thus result from
having to process too much information rather than too
little (Healey, Ngo, & Hasher, 2014; Gazzaley, Cooney,
Rissman, & D’Esposito, 2005; Hasher et al., 1999; Anderson
& Spellman, 1995). Higher modularity may therefore be
an index of network inhibitory control of “noise”/irrelevant
information. In support of this idea, we found that higher
modularity reflected better on-task performance, as
seen here in reduced priming from previously seen dis-
traction. We note that others have found contradictory
evidence for the role of modularity in working memory.
Kitzbichler et al. (2011), for example, found that increas-
ing levels of modularity were associated with worse per-
formance in a young adult sample (mean age= 29.5 years)
as task difficulty increased (they used a 1- and 2-back work-
ing memory tasks). A possible explanation for the discrep-
ancy between the present results and those of Kitzbichler
et al. is that the latter tested only young adults and used
both a 1- and 2-back variant of the n-back task. Our study
used only a 1-back variant, and our young adults were at
ceiling levels of performance. In addition, our level of “dif-
ficulty” was in the distracting nature of the interfering

information, not working memory load per se. Thus, it is
difficult to compare our results with those of Kitzbichler
et al., and future work will need to assess modularity in
young and older adults in relation to parametrically in-
creasing task demand to fully address the conditions that
lead to increased or decreased modularity as a function
of cognitive load.

Our results agree with, and extend, previous studies
examining circadian effects on behavioral and neuro-
imaging measures (Anderson et al., 2014; Blautzik et al.,
2014; Peres et al., 2011; Schmidt et al., 2007; Hasher
et al., 2005). We previously reported that time-of-day effects
are observed in a task requiring inhibitory control, namely,
priming for distraction, echoing previous research sug-
gesting that time of testing selectively affects fluid cognitive
processes rather than crystallized or semantic processes
(Hahn et al., 2012; Goldstein et al., 2007; Schmidt et al.,
2007; Hasher et al., 2005). In the analyses reported here,
we found that priming for distracting verbal information
(a measure reflecting inhibitory control over irrelevant
information) correlated with graph metrics. Better inhibi-
tion of distraction was correlated with greater small-
worldness andmore highlymodular networks. Importantly,
the Shipley vocabulary score, a measure of crystallized
intelligence, did not correlate with the graph metrics—nor
would we expect it to be based on the previous literature
cited above.

One limitation of our study is that the design was not
fully crossed in that young adults were not tested at their
nonoptimal times of day (the morning). Our rationale for
this choice was that we wanted to focus on older adults in
whom the synchrony effects on behavior are largest. That
is, although younger adults show time-of-day-based per-
formance differences in sentence recognition, working
memory, long-term memory, forgetting of story materials,
and priming for distraction (for a review, see Hasher,
Goldstein, & May, 2005), across all of these effects, older
adults typically show a synchrony effect that is twice as
large as those seen in young adults. This suggests that
young adults, although not immune to time-of-day effects,
are less vulnerable to them than older adults. Given the
decrease in magnitude of behavioral synchrony effects
for young adults and the general lack of change in network
topology that we observed across conditions in the young
group, we suggest that detecting network changes in
young adults across the day likely is possible but would
require a very large sample and perhaps a more targeted
approach with networks of interest chosen a priori.

Our study shows that functional networks respond
dynamically to time of day as they would to an external
stressor, such as a challenging task (Grady et al., 2010;
Greicius, 2008; Wang et al., 2007). Indeed, we find that
time of day interacts with task demands, such that there
were no age differences evident at rest but marked re-
ductions in modularity and small-worldness in the AO
group in the most demanding condition. Given that cir-
cadian rhythms are known to affect heart rate (Roeser

Anderson et al. 569



et al., 2012) and glucose consumption in the brain
(Buysse et al., 2004), both of which are known to impact
the BOLD signal, it is unsurprising that we are able to
observe circadian-driven differences in BOLD signal itself.
Future research should investigate whether time of test-
ing differentially influences the neural and vascular contri-
butions to the BOLD signal. In addition, small-worldness
and modularity are considered to be important indica-
tors of disease processes, including mild cognitive im-
pairment, Alzheimer’s disease, and schizophrenia, (e.g.,
Fornito, Zalesky, Pantelis, & Bullmore, 2012; Sun, Tong,
& Yang, 2012; Zhao et al., 2012; Sanz-Arigita et al., 2010;
Supekar, Menon, Rubin, Musen, & Greicius, 2008;
Micheloyannis et al., 2006). Our data suggest that it
would be useful to routinely measure time of testing and
chronotype, especially when scanning cognitively dem-
anding tasks with an elderly participant pool.

Conclusions

We show that, for older adults, both behavior and brain
network characteristics are maintained in the morning
and diminished in the afternoon and that these effects
interact with task demands. There were no measurable
age differences in the 1-back performance for the easier
ignore-nonword condition as well as no age differences
in network topology at rest. However, carrying out a task,
especially one with a significant cognitive demand (i.e.,
inhibiting distracting words), was accompanied by robust
differences between the AO group and younger adults in
graph metrics but maintained levels of modularity and
small-worldness in the MO group. Furthermore, across
groups, higher levels of modularity and small-worldness
were related to reduced priming for distraction and faster
Flanker effects (in the ignore-words condition). There-
fore, this study underscores the necessity of neuroimag-
ing studies to take time of day into account, particularly
when interpreting differences because of aging. This fac-
tor is vital for future replication studies because func-
tional connectivity varies both within an experimental
session and across the day (Calhoun, Miller, Pearlson, &
Adalı, 2014).
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